Charles Sturt University
Charles Sturt University

Dr Robert Wood

Dr Robert Wood

Teaching subjects

  • QBM117 (Business Statistics)
  • QBM217 (Advanced Business Statistics)

Top of page


Research

Academic Fields
  • Statistics
  • Mathematical economics
  • Non–negative matrices
  • Numerical linear algebra

Top of page


Selected Publications

2017

Li, Z., & Wood, R. (2017). Accuracy verification of a 2D adaptive mesh refinement method for incompressible or steady flow. Journal of Computational and Applied Mathematics, 318, 259-265. DOI: 10.1016/j.cam.2016.09.022

2016

Li, Z., & Wood, R. (2016). Accuracy analysis of a 2D adaptive mesh refinement method using lid-driven cavity ow and two refinements. In J. Vigo-Aguiar (Ed.), Proceedings of the 16th International Conference on Computational and Mathematical Methods in Science and Engineering (CMMSE 2016) (pp. 773)

2015

Li, Z., & Wood, R. (2015). Accuracy analysis of an adaptive mesh refinement method using benchmarks of 2-D steady incompressible lid-driven cavity flows and coarser meshes. Journal of Computational and Applied Mathematics, 275, 262-271. DOI: 10.1016/j.cam.2014.07.025

Li, Z., Wood, R., & Crowhurst, P. (2015). Error driven node placement as applied to one dimensional shallow water equations. In UKSim 2015 (pp. 31-38). [7576517] IEEE Computer Society.

2014

Li, Z., & Wood, R. (2014). Accuracy analysis of an adaptive mesh refinement method using benchmarks of 2-D steady incompressible lid-driven cavity flows. In J. Vigo-Aguiar (Ed.), Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering (pp. 829-839). CMMSE.

2009

Wood, R. (2009). An Always Convergent Method for Approximating the Spectral Radius of a Non-Negative Matrix, With Particular Reference to a Leontief Input-Output System Australia: Charles Sturt University

2007

Wood, R., & O'Neill, M. (2007). Finding the spectral radius of a large sparse non-negative matrix. ANZIAM Journal, 48(CTAC2006), C330-C345.

2005

Wood, R. J., & O'Neill, M. J. (2005). A New Method for Calculating the Spectral Radius of an Input-Output Matrix. Charles Sturt University.

2004

Wood, R., & O'Neill, M. (2004). A faster algorithm for identification of an M-Matrix. ANZIAM Journal, 46(5 (ELECTRONIC SUPPL.)), C732-C743.

2003

Wood, R. J., & O'Neill, M. J. (2003). An always convergent method for finding the spectral radius of an irreducible non-negative matrix. ANZIAM Journal. DOI: 10.21914/anziamj.v45i0.902

Wood, R., & O'Neill, M. (2003). An Always Convergent Method for finding the Spectral Radius of a Non-Negative Matrix. In J. Crawford, & A. Roberts (Eds.), ANZIAM journal (Vol. 45, pp. C474-C485). Australia: Anziam Journal (Electronic Supplement 2003-4).

2002

Wood, R., & O'Neill, M. (2002). Using The Spectral Radius to Determine whether a Leontief System Has a Unique Positive Solution. Asia-Pacific Journal of Operational Research, 19(2), 233-247.

1999

O'Neill, M., & Wood, R. (1999). An Alternative Proof of the Hawkins-Simon Condition. Asia-Pacific Journal of Operational Research, 16(2), 173.

Top of page